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ABSTRACT
Estimating speaker’s physical parameters like height, weight
and shoulder size can assist in voice forensics by providing
additional knowledge about the speaker. In this work, statis-
tics of the components of background GMM are employed
as features in estimating the physical parameters.These fea-
tures improved the performance of height and shoulder size
estimation as compared to our earlier attempt based on a
Bag of Word representation. The robustness of the features
is validated using two different training subsets containing
different languages.

Index Terms— Physical parameters, Speech forensics,
height, weight, shoulder size, MFCC, first order statistics,
GMM-UBM, SVR.

I. INTRODUCTION
Human speech contains information about the textual

message as well as various characteristics of a speaker such
as accent (the region where speaker belongs to), age (child,
adult, late adult), gender identity (male/female), emotions
(anger, happiness, sadness etc.). The speech also has a major
part in investigating physical parameters of the speaker. In
perspective of forensic analysis using speech data, the most
studied physical parameter is height.

Speech processing researchers have reported that locations
of formant frequencies are decreasing with an increment in
length of the vocal tract of a person [1]. This study has
shown that the length of vocal tract directly affects the
structure of speech. Height and vocal tract length were
found to be strongly correlated ( 0.855 for men and 0.832
for women) [2].

Previous Work: Different feature extraction methods have
been proposed by researchers. Some of the well-known ones
include the statistics of features extracted using OpenSmile
toolkit [3], [13], GMMs models [4].

Recently, a novel method for predicting the height of a
speaker using estimated sub glottal resonance frequencies
and attained 6.2cm RMSE [5],. An alternate approach fuses
short and long temporal windows to achieve an RMSE of

6.7cm for male and 6.1cm for female [6]. These papers
report the state of the art results in height estimation.
Researchers have attempted to predict other physical charac-
teristics such as age and weight from speech signal. Weight
is predicted using similar methods of approach and obtained
a correlation coefficient ∼ 0.52 [7]. The classification of
speakers into different age groups were attempted by [8],
[9] using GMM and SVM.

Authors in their previous work have explored prediction of
shoulder size and waist size in addition to height and weight.
This used Short-Time Fourier Transform (STFT) features
along with its static and dynamic components. These STFT
features are trained by using 512 components GMM-UBM
and are represented using Bag of Words (BoW). These BoW
represented features are used for support vector regression
training and predicted the physical parameters like height,
shoulder width, waist size and weight and achieved RMSE
of 6.6cm, 2.6cm, 7.1cm and 8.9kg respectively [10] with
the collected data.

Overview : The key aspects of our work are:
1) We try to improve our Bag of Word approach using first

order statistics of trained background GMM-UBM.
2) The robustness of the proposed features with respect to

spoken language are analyzed.
The rest of the paper is organized as follows, Section II

discuss dataset used for this work. In Section III the baseline
approach is described. Thereafter feature extraction method
in Section IV. Section V explains about the experiments
and results. Finally, we summarize our contributions and
conclusions in Section VI.

II. DATA COLLECTION

For this study we are using the same dataset used as
in [10]. This dataset is having the details of the physical
characteristics such as height, shoulder width, waist size and
weight. It has speech samples collected from 207 speakers
(includes 161 male and 46 female speakers) fall in 18 –
35 years age group. We call this dataset as AFDS (Audio
Forensics Dataset). The recordings were at 16 kHz sampling
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rate. In this dataset, each speaker has contributed roughly
for around 2 minutes of data spanning across two or three
sessions. Each session is around 40 seconds. Recordings
consists of sentences read from Indian newspapers. Users
have read text in their mother tongue as well as in English.
The mother tongue could differ between speakers. There
are 12 different mother tongues. height, shoulder width are
measured in centimeters (cm) and weight is measured in
kilograms (Kg).

III. BASELINE APPROACH

The authors used Short Time Fourier Transform features
for AFDS dataset. In this work, a set of representative cluster
centroid is obtained using k-means algorithm. Each speech
utterance is represented using a Bag of Words representation
using these cluster centers. Support Vector Regression is
employed to predict the physical parameters. Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE) were
reported.

Support Vector Regression:
Different regression models like linear and non-linear models
have been experimented with in the context of physical
parameter prediction [5], [11], [3]. In this work, we use
support vector regression (SVR) [12], as the model for
predicting the target physical parameter value for a given
set of input features. We denote the set of input features as
{y1, y2, ..., ym} and the respective target physical parameter
values are f(y) = wT y + b. The linear SVR tries to learn
a mapping which perform the following optimization:

min
1

2
wT w subject to

|wT yi + b− ti| < ε
(1)

The parameter ε controls the “fit”of the function. The
optimization aims to find a solution that deviates from the
target value by at most ε provided such a function exists.

IV. FEATURE EXTRACTION

In the past, several features had been explored for height
estimation such as statistics of pitch and short term spectrum
[13], [3], sub-glottal resonances [14] formants [15], STFT
features [10].

The short-term mel spectrogram captures the gross level
spectral characteristics. However, the short term spectrum
is affected by spoken phoneme characteristics. In order to
normalize the linguistic effect, we adopt a framework similar
to the super-vector approaches in speaker verification [16].
The super-vectors are the concatenation of first order mean
statistics of each mixture component of a Gaussian Mixture
Model - Universal Background Model (GMM-UBM).

For this purpose, a Universal background model (GMM-
UBM) is trained on short term mel frequency cepstral coef-
ficients. We use 20 MFCCs estimated from 25ms windows

along with frame level log energy. The velocity and accel-
eration coefficients are spliced with the MFCC coefficients
yielding 60 dimensional features [17]. A Gaussian Mixture
Model with diagonal covariance features is learned using
training data. The GMM density function is given by,

fUBM (x) =
M∑
k=1

wkN (x, µk, Ck) (2)

where x denotes the random vector. µk and Ck denote
the mean vector and diagonal covariance matrix of the kth

GMM component with weight wk. Given the sequence of
feature vectors {x1, x2, ..., xT }, the first order statistics are
computed as:

µ̂j =

∑
n xnp(j|xn)∑
n p(j|xn)

(3)

where a-posterior probabilities are computed as,

p(j|xn) =
wjN (xn, µj , Cj)∑M

k=1 wkN (xn, µk, Ck)
(4)

The speech utterance is then represented by concatenating all
the µ̂j for all GMM components. Intuitively, if each GMM
component j represent a different sound class, then each of
the µ̂j would account for the mean of features that belong
to that sound class. We finally applied a dimensionality
reduction using Principal Component Analysis (PCA) to
reduce the computation time.

V. EXPERIMENTS & RESULTS
Data. We used the same dataset as described in Section II.

The AFDS dataset is divided into training dataset containing
137 speakers (includes 104 male + 33 female) and test data
containing 70 speakers (includes 57 male + 13 female). For
training data we have 951 utterances and for testing 538
utterances. There is no overlap of speakers in training and
testing samples of recorded utterances. The height values
range from 147cm to 188cm, shoulder width from 30cm
to 53cm, and weight from 39kg to 107kg. The algorithms
are benchmarked using either Mean Absolute Error or Root
Mean Square Error.

MAE =
1

N

∑
i

|xtar,i − xpred,i|

RMSE =

√
1

N

∑
i

(xtar,i − xpred,i)2
(5)

where xtar and xpred are the target and predicted values of
each utterance i respectively.

V-A. Baseline Results
The authors computed log-magnitude STFT and its dy-

namic components using a window length 25ms and frame
shift is 10ms. 512 clusters centroids are obtained from
k-means algorithm. BoW feature were extracted. Support
Vector Regression with a normalized polynomial kernel
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(for details refer [10]) is employed for physical parameter
prediction. Table I lists the baseline results along with the
population mean (Predicting the train mean for every test
sample). This approach is better in terms of both MAE and
RMSE as compared to the population means (i.e. by blindly
predicting the mean of training data without looking at the
speech samples).

Table I. Baseline results with Support Vector Regression
(SVR) using Bag of Words (BoW) features.

Physical Population mean BoW + SVR

parameter MAE RMSE MAE RMSE

Height(cm) 6.81 8.22 5.20 6.58
Shoulder width (cm) 2.76 3.43 2.12 2.57
Weight(Kg) 8.29 10.57 6.72 8.91

V-B. First order Statistics
We perform speech activity detection [18] before feature

extraction for every speech sample. 20 Mel frequency Cep-
stral features along with its dynamic components are ex-
tracted. The feature dimension is 60 with δ & δδ features. A
256 component diagonal covariance GMM-UBM is learned
from the training data. The first order statistics are com-
puted according to equation 3 for each of the 256 mixture
components. Thus, the first order statistics has a dimension
of 60× 256 = 15360. As this feature dimension is high we
perform dimensionality reduction using principal component
analysis (PCA). We reduce to a smaller dimension of size K.
A Support Vector Regression is trained on the dimensionality
reduced features. Figure 1 shows the variation of MAE for
various dimensions. The algorithm was found to be robust to
value of K. We choose K = 256 for our further experiments.
Table II reports the results for the same. The MAE is 5.1cm
for height, 2cm for shoulder size and 6.9kg for weight. There
is an improvement of RMSE 0.21cm in height and 0.1cm
in shoulder size when compared with our baseline results.

V-C. Effect of UBM on Language
Here, we study the robustness of the system to spoken

language. The system is separately trained and evaluated
with two different subsets of the data – native language
utterances and English utterances. Both the GMM-UBM
and SVR are trained using one of the subsets at a time.
The system is then evaluated using the matched as well as
mismatched subset. We perform the following experiments.

1) First, the system is trained using English utterances
only, and is evaluated separately on the English
utterances (matched condition) and the native languages
(mis-matched condition). The MAE of each physical
parameter is shown in Fig. 2.

Table II. MAE, RMSE and Correlation of first order statis-
tics of MFCC +δ + δδ with 256 dimension.

Physical MAE RMSE Correlation
Characteristic

Height (cm) 5.10 6.37 0.63
Shoulder width (cm) 2.00 2.47 0.70

Weight (Kg) 6.85 9.00 0.53
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Fig. 1. MAE of each physical parameter with different
dimensionality reduction on first order statistics.
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Fig. 2. MAE of each physical parameter with SVR & GMM-
UBM trained on English samples and tested on both Native
and English samples.

Even though the model is trained on English utterances
and tested on Non-English (native) languages, the effect
of language in predicting the physical parameters error
is minimal. There is only 5.2% change in height, 4%
change in shoulder and 1.2% change in weight MAE.
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2) Next, the system is trained on multiple native languages
and tested separately on both English (mismatched) and
native language subsets. MAE corresponding to each
physical parameter is shown in Fig. 3.
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Fig. 3. MAE of each physical parameter with SVR & GMM-
UBM trained on Native language samples and tested on both
Native and English samples.

Similar to the above case, when the model is trained
on native languages and tested on native languages
and English there is minimal change in the predicting
error. The MAE change in between native and English
language while predicting height is 2.65%, 2.45% in
shoulder size and no change in weight.

Table III summarizes the results of these experiments with
matched and mismatched conditions of training models.

Table III. MAE comparison of matched and mismatched
conditions of trained model using English Language (E L)
and Native Languages (N L).

Physical Parameter

E L N L
Train Train

E L NL E L N L
Test Test Test Test

Height (cm) 4.99 5.25 5.14 5.28
Shoulder width (cm) 1.98 2.06 1.99 2.04
Weight (Kg) 6.88 6.96 6.97 6.97

The matched condition results in very similar performance
as earlier (Table II), eventhough the training data has been
reduced to almost half. Also it is interesting to note that
the percentage degradation is more when the training subset
contains only one language (English). The degradation is
less while multiple languages (12 Native languages) are
used in training even though the tested language (English)
is unseen in the training data.

VI. SUMMARY AND CONCLUSION

In this work we explored first order statistics of a GMM-
UBM as features for physical parameter estimation. The
same set of features are used to predict multiple physical
parameters of the speaker. A dimensionality reduction is
performed as the input feature dimension is high. These set
of features improved our earlier results using BoW based
features for height and shoulder size estimation by 0.23cm
and 0.13cm respectively in RMSE.

We also studied the effect of language on the system.
While only English is used for training the system there is
∼ 5.2% performance degradation in the mismatched condi-
tion. While training with native languages the performance
degradation is even smaller ∼ 2.5%.

In future the authors would like to explore robust features
like i-vectors [19] that could potentially address channel
variabilities in predicting the physical parameters.
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