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Abstract

In this paper we investigate the cues of COVID-19 on sustained
phonation of Vowel-/i/, deep breathing and number counting
data of the DICOVA dataset. We use an ensemble of classi-
fiers trained on different features, namely, super-vectors, for-
mants, harmonics and MFCC features. We fit a two-class
Weighted SVM classifier to separate the COVID-19 audio
from Non-COVID-19 audio. Weighted penalties help mitigate
the challenge of class imbalance in the dataset. The results
are reported on the stationary (breathing, Vowel-/i/) and non-
stationary(counting data) data using individual and combination
of features on each type of utterance. We find that the Formant
information plays a crucial role in classification. The proposed
system resulted in an AUC score of 0.734 for cross validation,
and 0.717 for evaluation dataset.

Index Terms: COVID-19, acoustics, machine learning, respi-
ratory diagnosis, healthcare

1. Introduction

The research on novel coronavirus (COVID-19) has become
the majorly focused research in the pandemic situation spread
around across 200 countries the world since last year 2020.
Extensive research involved in identification of infected peo-
ple with corona virus is challenging for health organizations as
well as individuals. The speared of the virus is majorly with
contacts and aerosol molecules released from sneezing, cough,
and cold/flu[1].

The rise in body temperature, difficulty in breathing, cough
and cold are the majorly observed symptoms of COVID-19;
however, totally asymptomatic cases are also possible[1]. The
clinical protocols in identifying whether the individual is in-
fected with coronavirus include swab test [2], CT scans [3, 4],
chest X-Ray Images [5, 6] etc. Along with clinical methods of
identifying COVID-19, researchers have also explored machine
learning (ML) and deep learning (DL) methods [7], in leverag-
ing the bio-markers like speech and audio signals in screening
the COVID-19 to help in the assessment of the viral infection.

Different studies and pathological investigations have
proved that COVID-19 infected individuals exhibit difficulty
while breathing and speaking. Furthermore, the changes in
speech might not be identifiable by human perception, al-
though the person is infected, but the Computer auditions (CA)
[8, 9, 10, 11] can. In this work we tried to investigate de-
tection of the COVID-19 from speech sounds counting num-
bers, breathing and speech sounds i.e, Vowel-/i/ from DiCOVA
dataset [12].

There have been a few attempts in the literature to use
cough patterns to classify pathological conditions such as bron-
chitis and pertussis[13, 11]. Many efforts have been attempted
in collecting the data for detecting COVID-19 using web based
applications as well as mobile apps [14, 15, 16] etc,. The re-
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search efforts made on the collected speech/cough/breathing
data is mainly focused on the machine learning approaches.
According to research on COVID-19 patients, infected peo-
ple’s respiration activity is higher than that of other flu and com-
mon cold patients [17]. From a survey different types of fea-
tures extracted from speech/breath/cough data; Mel frequency
cepstral coefficients (MFCC), spectral features, temporal fea-
tures and spectrograms, etc, are used for COVID-19 detection
[18]. Other research has found that respiratory parameters have
an effect on a person’s stress levels [19], mood/emotion[20],
and physiological state of individuals [21]. Various research
attempts have been made to estimate the behavioural state of
humans using speech data in situations such as cold, cough, dis-
comfort, pain, sleepiness, and infant cries as part of the Inter-
speech Computational Para-linguistics Challenge (ComParE).
Schuller et al. proposed a set of computer audition tasks for
COVID-109 risk assessment using machine learning techniques,
including speech analysis and sound analysis.[9]. Few other
studies on patients with health problems like Obstructive Sleep
Apnea Detection (OSA) used machine learning approaches us-
ing conventional features like formants, pitch, MFCCs, and Lin-
ear prediction cepstral coefficients etc,[22]. In this work, we
focus on the DICOVA Track-2 dataset, and explored different
spectral features for detection of COVID-19 from the breathing
patterns, numbers counting from one to twenty and Vowel-/i/.
The organization of the paper is as follows, Section 2 de-
scribes about the dataset used i.e, DICOVA track 2 dataset. Sec-
tion 3 details the feature extraction and statistical representation
of each phoneme as well as sentence. Details of the classifica-
tion method and the experiments and results are detailed in Sec-
tion 4. Finally, the conclusions of the reported work and future
directions of the proposed approach are presented in Section 5.

2. Dataset

The dataset is taken from the DiCOVA challenge Track-2
dataset as described in [12]. There are 3 different modes of
audio recordings in the data, namely Breathing-Deep, counting
of digits from one to twenty at a normal pace and sustained ut-
terance of the vowel /i/ from 1199 subjects. The training split
consists of 990 speakers with 930 speakers in the COVID-19
negative class and 60 speakers in COVID-19 positive class. The
evaluation data consists of 188 speakers in the COVID-19 neg-
ative class and 21 speakers in COVID-19 positive class. All
the audio files are of 44.1 kHz, mono channel type in .flac for-
mat. We convert the .flac files to .wav and down sample them to
16kHz and 8kHz.

3. Feature Description

In this work, we explored features from the speech at different
time resolutions. We experimented with both short and long
temporal windows to extract different information pertaining to
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MFCCs, formant locations, pitch and harmonic frequency loca-
tions from the input signal.

In case of the non-stationary input signal (counting digits
data), we use a super-vector like feature representation from
the short term spectrum. In case of the stationary input signals
(Breathing, vowel -/i/ ) we use the average MFCC across the file
as feature representation. In combination with these, statistics
of frame-wise formant and harmonic locations are also used as
features. We describe each individual feature below

3.1. Super vector features

Super-vectors[23] represent mean of the short term features for
different sound classes. These were originally used in speaker
recognition. We use these super vectors to extract utterance
level features from the non-stationary input signal — i.e., the
counting-digits data. Here each user counts from one to twenty
and is considered one single utterance.

We use the ASpIRE chain model to compute the frame
level posterior probabilities of each utterance in the Counting-
Normal dataset. The ASpIRE model is a Time-Delayed Neural
Network (TDNN) trained on the Fisher English dataset [24].
Data augmentation by means of different room impulse re-
sponses and noises are incorporated in the model to increase
its robustness [25]. The ASpIRE model takes short term mel
spectrum as the input and computes the frame-level posteriors
of different context-dependent phonemes. We windowed the
audio files into 25ms long, and a shift of 10ms and extracted
the 40-dimensional MFCC coefficients. In addition; we com-
puted the frame level phoneme posteriors from the ASpIRE
chain model [26]. Although ASpIRE model outputs context
dependent phoneme posteriors, we sum over the contexts to ob-
tain context independent phoneme posteriors. We thus obtain a
39 dimensional posterior vector corresponding to the 39 TIMIT
phonemes. Silence phoneme is discarded. We then compute the
normalized first order statistics of each phoneme in the follow-
ing manner.

Consider an input sequence of short term mel-spectral fea-
tures from a speech utterance {X1,Xz2,...,xt}. The frame
level posteriors output by the model are {p1, ..., prT} where:

by

Pj
p; = |. (D
p}’

with p} denoting the posterior probability of phoneme ¢ at
the frame index j. Once the posterior probabilities are calcu-
lated, we compute the normalized first order statistics of each
phoneme as :
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We concatenate all frames of f* of each phoneme to obtain a su-
per vector F = [f* £2, ... £™] which represents the utterance
level feature.

Each phoneme’s first order statistics is a 40 dimensional
vector,they are concatenated to form a 40 x 39 = 1560 dimen-
sional super-vector for each utterance. These 1560 dimensional
super-vectors are used as features to fit a support vector machine
(SVM) model.
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3.2. Average MFCC features

In the case of Vowel-/i/ and breathing data, the vocal tract is sta-
tionary. Therefore is not very meaningful to compute phoneme
posteriors. In this the average of the short term MFCC fea-
tures across all frames is used as input features. We keep all the
coefficients without cepstral truncation. Since we compute 40
dimensional MFCC features, the averaged feature also will be a
40 dimensional feature vector. We call these the average MFCC
features.

3.3. Fundamental Frequency and Formants

This set of features is based on a longer temporal context. We
use the pitch and formant information as input features. We use
the PEFAC algorithm [27] which uses both noise rejection and
normalization while ensuring temporal continuity in the pitch
estimates. Formant frequencies are computed by capturing the
peaks of an 18" order auto regressive (AR) model. This results
in nine peak locations. We use the first four peak locations to
capture the formant frequencies denoted by F1, F2, F3, F4. The
percentile values (5,25, 50, 75, 95) of formants across the entire
utterance are computed as features and are used to train a SVM
model for classification [28]. We call these as the formants fea-
tures.

3.4. Harmonics

This is also a set of features based on a longer context. Basically
we are motivated to use these features since, they could capture
jitter, shimmer etc. Thirty harmonics are extracted from an 80
order AR model computed over a time window of length 60ms
and shift 10ms. Similar to formants we compute the 5th o5th
50%", 75" and 95" percentile values across the entire utterance
along with the standard deviation of the percentiles to be used
as features. We call these the harmonic features.

4. Experiments and Results

We performed all our experiments on the DiCOVA track 2
dataset. The dataset details are mentioned in Section 2.

We extract the short term MFCCs from the input speech
files. These are used to compute super-vector features in case of
counting data. The super-vector computation uses the phoneme
posteriors predicted by the ASPIRE model. The statistics are
aggregated across all frames to compute the utterance level fea-
tures (Eqn 2.) In case of the other two inputs (i.e., breathing
and vowel /i/) the signal is stationary and therefore the MFCC
is simply averaged to obtain the utterance level feature.

The pitch, formant frequencies, and harmonic frequencies
are computed at the frame level using a long temporal context
(80ms ). Different percentiles (5, 25, 50, 75, 95) of each of
the features (pitch, formant frequencies, harmonic frequencies
etc.,) are used as the utterance level features. We exclude the
pitch information in the case of breathing data.

These features are used to learn individual SVM models.
In order to assess the individual feature performances, and tune
the hyper-parameters of the system (SVM penalty terms, fea-
ture combination scheme), we perform a 5-fold cross validation
using the folds given in the DiCOVA Track-2 dataset mentioned
(see Section 2 ) for each feature separately.

We used a class-weighted SVM model with a Radial Basis
Function (RBF) as kernel to detect COVID-19 speakers. The
penalty parameter C' is weighted differently for positive and
negative class. The weights are inversely proportional to the



number of samples in the class. This allows the margin to be
softer on the COVID-19 positive samples but forces the margin
to be harder on the COVID-19 negative samples and minimize
false negatives.

Table 1: Sensitivity, Specificity and AUC metrics on Counting-
Normal data using different features on cross validation data
(CV) and evaluation data (Eval) of DiCOVA dataset.

Counting-Normal
Features Sensitivity ~ Specificity AUC
Super-vectors (CV) 0.610 0.614 0.642
Formants (CV) 0.629 0.626 0.666
Harmonics (CV) 0.610 0.609 0.641
All Features(CV) 0.619 0.617 0.675
Super-vectors (Eval) 0.619 0.570 0.638
Formants (Eval) 0.714 0.617 0.697
Harmonics (Eval) 0.524 0.654 0.652
All Features (Eval) 0.638 0.638 0.683

The model is evaluated using Sensitivity, Specificity and
Area Under the Receiver Operating Characteristic curve (AUC).
Sensitivity and Specificity are given by:

Sensitivity = __re
~ (TP+FN)

o TN
Sp@CZf’LCZty = m

Where TP denotes number of true positives, FP denotes the
false positives, FN denotes the false negatives, TN denotes the
true negatives.

We perform hyper-parameter optimization for the SVM
penalty parameter across the 5-folds to maximize the AUC
value. We thus aim for maximization of the AUC as the metric
to assess the classifier’s performance. We compute the equal
error rate point in the ROC that is the place where the false pos-
itive rates and false negative rate are equal, where:,

FP
False Positive Rate = 7( FP+TN)

FN
False Negative Rate = m

Sensitivity, specificity and AUC values for counting-
digits,Vowel-/i/ and Breathing-Deep dataset are shown in Ta-
ble 1, Table 2 and Table 3 respectively. The ROC-curves for
counting-digits, Vowel-/i/ and Breathing-Deep are shown in
Figure 1, Figure 2 and Figure 3. respectively.

Table 1 shows the result of the counting speech data for dif-
ferent features. We note that formant features perform the best
on the counting-digits data followed by harmonics and super-
vectors. Katrin et.al has reported that the combination of multi-
ple features can characterise COVID-19 in significant way when
compared with individual feature set [29]. We also perform a
similar feature combination on all three computed feature vec-
tors (super-vectors, formants and harmonics) by averaging the
scaled probabilities from each of the individual SVMs. The fea-
ture combination results in an average AUC of 0.675 on the val-
idation and AUC of 0.683 on evaluation data. Even though the
combination is better than the super-vectors and harmonics, the
formant features alone yield the best performance on the evalu-
ation data.
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Table 2: Sensitivity, Specificity and AUC metrics on Vowel-/i/
data using different features on cross validation data (CV) and
evaluation data (Eval) of DiCOVA dataset.

Vowel-/i/
Features Sensitivity ~ Specificity ~AUC
MFCC (CV) 0.648 0.649 0.687
Formants (CV) 0.600 0.597 0.619
Harmonics (CV) 0.600 0.624 0.632
All Features (CV) 0.629 0.628 0.677
MFCC (Eval) 0.476 0.622 0.603
Formants (Eval) 0.573 0.633 0.583
Harmonics (Eval) 0.619 0.559 0.586
All Features (Eval) 0.571 0.574 0.611

Table 3: Sensitivity, Specificity and AUC metrics on Breathing-
Deep data using different features on cross validation data (CV)
and evaluation data (Eval) of DiCOVA dataset

Breathing Deep
Features Sensitivity ~ Specificity AUC
MFCC (CV) 0.619 0.597 0.614
Formants (CV) 0.610 0.613 0.651
All Features (CV) 0.600 0.608 0.654
MFCC (Eval) 0.524 0.554 0.592
Formants (Eval) 0.667 0.590 0.717
All Features(Eval) 0.619 0.676 0.691

From Table 2 we note that MFCC features perform the best
on the Vowel-/i/ data followed by harmonics and formants.
Similarly, we performed feature combination on MFCC, for-
mants and harmonics as described above. This results in an
AUC of 0.677 on validation and an AUC of 0.611 on evaluation
data. In this case, the feature combination is marginally better
than the best performing feature on evaluation data.

From Table 3 we note that formants perform the best on the
Breathing-Deep data followed by MFCC features. The combi-
nation of MFCC and formant features on the Breathing-Deep
data has obtain an average AUC of 0.654 on validation and an
AUC of 0.691 on evaluation data. Here the feature combination
outperforms the MFCC feature, although it is marginally worse
than formants.

Table 4: AUC of each feature combined across tasks on valida-
tion data (CV) and evaluation data (Eval) of DiCOVA dataset

’ Features AUC ‘
Super-vectors+MFCC (CV)  0.709
Formants (CV) 0.713
Harmonics (CV) 0.664
Super-vectors+MFCC (Eval)  0.630
Formants (Eval) 0.752
Harmonics (Eval) 0.626
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Figure 1: ROC of counting data of DiCOVA dataset

We also try to study the performance of each feature across
the different tasks. We perform different combinations for all
the tasks. First, we consider formant features across the three
different tasks. Next, we combined super-vectors and MFCC
(SV+MFCC) features across all the three different tasks. Later,
we also consider harmonic features across the counting and
vowel tasks.

We observe from Table 4 that formant information plays an
important role in the classification. The ROC curves are shown
in the Figure 5. We find that the harmonic features performance
is inferior to the other features, and therefore dropped this fea-
ture from further evaluation.

We now to try to combine the results across three different
input signals ( Counting, breathing and vowel - /i/). Again we
simply average the individual probabilities of each feature from
different input signals. From each of the three signals we have
a SVM probability for short term spectral based features and
Formant features. We average these six probability values to get
the final combination. This results in an average AUC of 0.734
on validation and an AUC of 0.717 on the evaluation data. The
ROC curve is shown in Figure 4.

This feature combination has improved the performance
compared to any single feature best result from any of the in-
put signals. Thus there is some complementary information be-
tween the different signals and features.

Vowel-/if ROC
10
0.8 1
u
&
L, 0.6
=
& 04 mfcc_CV, AUC=0.687
ﬁ ) mfcc_eval, AUC=0.603
— formants_CV, AUC=0.619
02 — formants_eval, AUC=0.583
— harmoenics_CV, AUC=0.632
— harmenics_eval, AUC=0.586
0.0 T

04 0.6
False Positive Rate

08

Figure 2: ROC of Vowel -/i/ data of DiCOVA dataset

5. Conclusion

10

We have designed an SVM system with features based on for-
mants, harmonic frequencies and short term MFCC for COVID-
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Figure 3: ROC of breathing data of DiCOVA dataset
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Figure 4: ROC of feature combination of DiCOVA dataset
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Figure 5: ROC of task fusion on DiCOVA dataset

19 detection in the DiCOVA Challenge Track-2 Dataset.
We used super-vector based features for non-stationary input
(counting) and average MFCC features for stationary input
(breathing, Vowel-/i/) as short term features. We then combined
the SVM models of formants and short term MFCC features
across all the signals, by averaging the individual SVM proba-
bilities. The proposed system resulted in an AUC score of 0.734
for cross validation, and 0.717 for evaluation dataset that is bet-
ter than any of the individual features. In the future, we would
like to study additional features and assess the performance of
our system across different datasets.
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